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Abstract

The messenger sector of existing models of gauge-mediated supersymmetry breaking may be
simpli�ed by using a non-renormalizable superpotential term to couple the vector-like quark
and lepton messenger �elds to a chiral gauge-invariant of the supersymmetry-breaking sector.
This eliminates the need for a fundamental singlet and for an additional gauge sector needed

to generate appropriate expectation values for the singlet component �elds. This scenario is
more natural if the supersymmetry-breaking sector itself involves a non-renormalizable super-
potential. Several examples are constructed based on non-renormalizable SU(n)�SU(n� 1)
supersymmetry-breaking theories.



1 Introduction

Most models of gauge-mediated supersymmetry breaking rely on a singlet �eld S with A- and

F -type expectation values to generate supersymmetry breaking masses for a pair of \messenger

�elds", f and �f , through the superpotential coupling

W = S f � �f : (1.1)

With the �elds f , �f transforming as a vector multiplet of the Standard Model (SM) gauge

group, supersymmetry breaking is then communicated to the SM �elds through the SM gauge

interactions [1].

It is usually non-trivial to generate appropriate expectation values for the singlet. To do

that, the most economical models employ a U(1) gauge symmetry sector with superpotential

couplings to the singlet, in addition to the basic supersymmetry-breaking sector [1]. Also, an

S3 term must be included in the superpotential to avoid runaway behavior.

But a generic supersymmetry-breaking theory contains di�erent gauge-invariants with dif-

ferent A- and F -type vevs. It is therefore natural to try to use these to replace the fun-

damental singlet. The �eld S of eqn. (1.1) is then a composite, and the term (1.1) is a

higher-dimension term, suppressed by an appropriate power of some scale M . While the ap-

pearance of this scale is in general ad hoc, some supersymmetry-breaking models inherently

involve such a scale, since they rely on non-renormalizable superpotentials to achieve super-

symmetry breaking [2],[3],[4]. Furthermore, as we will see below, with a renormalizable theory

as the supersymmetry-breaking sector, these models are only viable when some dimension-

less coupling is taken to be extremely small, on the order of 10�9. This constraint can be

alleviated if the supersymmetry-breaking sector involves a non-renormalizable superpotential.

The reason for this the following. Since the term (1.1) is suppressed by some power of the

scale M , and since we would like M to be large, the �elds making up the composite singlet

should have large expectation values for the messenger mass scale to be of the correct order.

If the supersymmetry-breaking sector is non-renormalizable, with terms suppressed by M ,

the typical expectation values are naturally large. However, in a renormalizable model, this

requires some small coupling. It should be stressed that all our examples do require some

small coupling, between 10�4 and 10�1 depending on the model we consider.

We present several examples of gauge-mediated supersymmetry-breaking models in which

the singlet �eld S is replaced by a composite �eld of the supersymmetry-breaking sector.

As the supersymmetry-breaking sector we use a class of SU(n) � SU(n � 1) gauge theories

described in [2].

There are several motivations for using these particular theories. First, the SU(n) �
SU(n�1) theories involve non-renormalizable superpotentials for n > 4, and therefore provide
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a natural setting for introducing the non-renormalizable term (1.1) as explained above.

Second, these theories have supersymmetry-breaking, calculable minima that may be stud-

ied through a simple sigma model. In fact, it is possible to study many features of the minimum

analytically, and this will prove useful for the present analysis.

As an added bonus, the superpotentials of these theories do not conserve any R-symmetry.

Hence, the models we construct are probably the only phenomenological examples with dy-

namical supersymmetry-breaking that do not resort to supergravity considerations in order

to avoid a massless R-axion.

A potentially problematic feature of these models is that they contain massless fermions.

However, as we will see in section 3, the massless fermions do not pose any cosmological

problem if the scale M is su�ciently big, as is the case in the examples we construct. It

should be stressed that the existence of the massless fermions is not related to the focus of

this paper, namely, the possibility of eliminating the fundamental singlet. For example, we

expect our qualitative results to hold for models based on the analogous SU(n)� SU(n� 2)

supersymmetry-breaking theories of [3], which do not contain massless fermions. In fact, our

main results probably apply to a much larger class of theories, since they follow from simple

dimensional analysis.

We discuss the general requirements on the models, and derive some general results based

on dimensional analysis in section 2. In section 3 we study some examples based on SU(n)�
SU(n� 1) supersymmetry-breaking theories. Some technical details concerning the SU(n)�
SU(n� 1) minimum we consider are collected in the Appendix.

2 Communicating supersymmetry breaking to the stan-

dard model

As outlined in the introduction, our models consist, apart from the �elds of the supersymmetric

Standard Model, of a supersymmetry-breaking sector (SB), and of the vector-like quark and

lepton messenger �elds [1] f and �f , with the superpotential

W = WSB + S f � �f : (2.1)

Here WSB is the superpotential of the supersymmetry-breaking model, and

S =
1

Md�1
S0 ; (2.2)

where S0 is a gauge-invariant combination of the �elds of the supersymmetry-breaking sector,

of dimension d. The �eld S is chosen so that it has both A- and F -type vacuum expectation

values. In the following, we will sometimes refer to these vevs as S and FS.
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Let us now summarize the requirements on the expectation values S and FS.

First, for the scalar messengers to have positive masses 1 [1],

FS < S2 : (2.3)

Second, to generate appropriate masses for the SM superpartners we need [1, 5]

FS

S
� 104 � 105 GeV : (2.4)

For brevity, we will require FS=S � 104:5 GeV.

Third, the most serious constraint on these models comes from the requirement that the

supersymmetry-breaking scale is low enough. In principle, the K�ahler potential may contain

higher dimension terms, suppressed by some power of M , that couple either the standard-

model �elds, or the messenger �elds, to the �elds of the supersymmetry-breaking sector. Such

terms could induce contributions of the order of

m0 =
F0

M
; (2.5)

to the masses of the scalar messengers, or to the masses of the SM scalar superpartners.

Here F0 is the supersymmetry-breaking scale squared. As we will see shortly, when combined

with (2.3), the requirement

m0 =
F0

M
� 1 GeV ; (2.6)

which would avoid problems with avor-changing neutral currents, can only be satis�ed in the

type of models we are considering by taking one of the dimensionless couplings that appear

in the superpotential to be extremely small, on the order of 10�9. Although not unnatural in

the 't Hooft sense, since taking any of these couplings to zero typically restores some global

symmetry, we �nd this unacceptably small. Instead, we must assume that no higher-dimension

terms that couple the SM �elds and the supersymmetry-breaking sector �elds appear in the

K�ahler potential at the tree level. We will therefore take M < MP lanck. Below we choose

M �MGUT .

The scenario we envision is that some new physics takes place above the scale M . This

new dynamics involves the �elds of the supersymmetry-breaking model (or just some of them)

and the messengers, and gives, as its low energy theory, the theory we describe with the

superpotential (2.1). It would of course be nice to have an actual microscopic theory that

does this, but at present we do not know of such an example.

While it is perhaps not unreasonable to assume that no terms coupling the SM �elds to

the �elds of the supersymmetry-breaking sector appear in the K�ahler potential, one cannot

1Note that the messenger masses only depend on the absolute value of FS, but for simplicity, we omit the

absolute-value sign throughout this paper.
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assume the same for the messenger �elds, since these couple directly to the �elds of the

supersymmetry-breaking sector through the superpotential. It is therefore necessary to ensure

that contributions to the messenger masses from possible K�ahler-potential terms, of the order

F0=M , are negligible compared to contributions coming from (1.1). In fact, F0=M should be

small compared to both the messenger masses and their mass splittings, in order to generate

acceptable masses for the SM superpartners. A non-zero value of StrM2, taken over the

messengers, may lead to negative masses squared for the SM squarks and sleptons, especially

in models of the type we are considering, in which a large hierarchy of scales exists due to the

presence of non-renormalizable terms suppressed by a large energy scale M [6], [7], [8], (see

also [9]). We therefore require2; 3

F0

M
� 10�1

FS

S
: (2.7)

Finally, one would like to have
p
F0 � 109 GeV, so that supergravity contributions to the

superpartner masses are at most at the order of 1 GeV. With (2.4), (2.7), this is automatically

satis�ed for M � 1015 GeV. However, for M =MGUT , the stricter bound,

F0

M
� 10�2

FS

S
(2.8)

is needed, instead of (2.7).

Let us now see what the requirements (2.3), (2.4) and (2.7) imply for our models. Here

we will only present rough order-of-magnitude estimates. A more quantitative analysis is

undertaken in section 3 where speci�c examples are studied.

Since the �eld S is a composite �eld of dimension d,

S � M

�
v

M

�d
; (2.9)

where v is the typical expectation value in the problem. We also have,

FS

S
�

�
v

M

��1 F0

M
: (2.10)

If no large numerical factors appear in (2.10), eqn. (2.7) (2.8), then imply

v

M
� 10�1 or 10�2 : (2.11)

Now let us assume that the highest-dimension term appearing in the superpotential of the

supersymmetry-breaking model, WSB, is also of dimension d. In particular, for d > 3, we

2The dangerous contribution to the supertrace is of the order
�
F0
M

�2
log
�
M2

S2

�
and for M = MGUT the

logarithm is approximately 5.
3I thank S. Trivedi for a discussion of this estimate.
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assume that this highest-dimension term is necessary for supersymmetry breaking to occur.

Then the supersymmetry-breaking scale will typically be of the order

F0 � W=v � �M2

�
v

M

�d�1
(2.12)

where � is the dimensionless coe�cient of the highest-dimension term in the superpotential

WSB. We then have

FS � � M2

�
v

M

�2 (d�1)
; (2.13)

and
FS

S2
� �

�
v

M

��2

: (2.14)

If no large numerical factors appear in (2.14), we see from (2.3) and (2.11),

� �
�
v

M

�2
� 10�2 or 10�4 : (2.15)

Thus, generically, some of the dimensionless couplings appearing in the supersymmetry-

breaking superpotential WSB need to be small in order to satisfy both (2.3), (2.7).

It is worth noting that, whereas the requirement (2.11) holds quite generally in the absence

of large numerical factors, (in fact, it is not much of a constraint, since v should be much

smaller than M for the analysis to be valid), the condition (2.15) depends sensitively on

the assumption that the highest dimension term in WSB is of the same dimension as the

composite S. In particular, if the dimension of the composite S is smaller than the highest-

dimension term in WSB, the condition (2.15) may be avoided altogether. However, as the

examples we discuss in the next section demonstrate, chiral gauge-invariant �elds, or moduli,

may scale in the same way with v=M even when they have di�erent dimensions. The reason

for this is simple{the di�erent terms appearing in WSB are nothing but gauge-invariants,

and at a generic minimum these terms are comparable, so that the expectation values of the

corresponding gauge invariants only di�er by dimensionless couplings.

Finally, it would seem that (2.15) may be avoided if FS is suppressed compared to S2.

But that typically means that FS is also suppressed relative to F0, so that the RHS of (2.10)

contains a small factor, which then enters squared in (2.15), making matters worse. One is

therefore led to consider regions in which FS is not particularly suppressed with respect to

the other F components in the problem.

At this stage, both � and v=M are determined. The messenger scale

FS

S
� �M

�
v

M

�d�2
� M

�
v

M

�d
: (2.16)

is then completely �xed in terms of the scale M . Here we have used (2.9), (2.13), (2.15). For

example, for MGUT , with (2.8), one needs d = 6 or 7 to obtain the desired messenger scale.
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For M = 1015 GeV, with (2.7), one needs instead d = 10 or 11. Thus, for these models to be

viable, the supersymmetry-breaking model must involve a non-renormalizable superpotential.

To summarize, the conditions (2.3), (2.7) imply a speci�c relation between the coupling �

and v=M (see eqn. (2.15)). Then, to generate the correct hierarchy between the messenger

scale and the scale M , it is necessary to have, for large M , either a very small coupling, or a

non-renormalizable superpotentialWSB. Thus, by using a non-renormalizable supersymmetry-

breaking sector, one can avoid dimensionless couplings that are extremely small. Indeed, for

a renormalizable model, eqn. (2.16) gives, with d = 3 and M =MGUT , � � 10�8.

In the next section we will therefore turn to speci�c examples with a non-renormalizable

SU(n)� SU(n � 1) supersymmetry-breaking sector.

3 Models with an SU(n) � SU(n � 1) supersymmetry-

breaking sector

3.1 The SU(n) � SU(n � 1) theories

As our supersymmetry-breaking sector we use the SU(n) � SU(n � 1) gauge theories of [2].

These theories have the matter content, Q � ( ; ), LI � ( ;1), with I = 1 : : : n � 1 and

RA � (1; ), with A = 1 : : : n, and the superpotential

WSB = � �IYII + �
b1

Mn�4
+ �

bn

Mn�4
: (3.1)

where YIA = LI �Q �RA, and b
A = (Rn�1)A are the baryons of SU(n�1). (When appropriate,

all indices are contracted with �-tensors).

In the presence of the superpotential (3.1), the original SU(n�1)�SU(n)�U(1)�U(1)R
global symmetry is broken to SU(n � 1) � U(1)R for � 6= 0, which is further broken to

SU(n � 2) � U(1)R for � 6= 0. Finally, the last term in (3.1) breaks the U(1)R symmetry, so

that the remaining global symmetry is SU(n� 2).

As was shown in [2], these theories break supersymmetry as long as � 6= 0. For � = 0,

the theories have runaway supersymmetric minima along the baryon at directions, and far

along these at directions, the light degrees of freedom are weakly coupled [10]. Therefore, for

large M , the properties of the minimum can be reliably calculated [6]. In [6], this was used

to study the minimum of the analogous SU(n) � SU(n � 2) theory (see also [8] for the case

of SU(n)�SU(n� 1)). We will therefore only outline the main points of the argument here,

and refer the reader to [6] for details.

Consider then a D-at direction with the �elds RA, with A = 1 : : : n � 1, obtaining

expectation values of order v. The gauge group SU(n � 1) is then completely broken at the
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scale v, while the SU(n) group remains unbroken. However, as a result of the �rst term

in (3.1), all SU(n) �elds now get masses of order �v. For large enough v, these �elds can be

integrated out, leaving, at low energies a pure SU(n) which con�nes at the scale

�L =
�
(�v)n�1�2n+1

� 1
3n

: (3.2)

Below this scale, one is then left with the light components of the �elds R, with the SU(n�1)

dynamics negligibly weak, and the (strong) SU(n) dynamics decoupled, except that its non-

perturbative contribution to the superpotential

�3
L =

�
�n�1bn�2n+1

� 1
n

; (3.3)

arising from gaugino condensation in the pure SU(n), involves the �elds R (recall bn �
(R1 : : : Rn�1)). As was argued in [10], quantum corrections to the K�ahler potential for the

�elds R are very small, so that it is of the form

K = RyARA : (3.4)

Thus, all the properties of the vacuum may be calculated.

As in [6], we will �nd it convenient to work in terms of the baryons. Our low energy theory

is then a theory of the n baryons bA, with the superpotential

WSB =
�
�n�1 �2n+1 bn

� 1
n + �

b1

Mn�4
+ �

bn

Mn�4
; (3.5)

and the K�ahler potential obtained from (3.4) as in [11], [12],

K = (n� 1) (byAb
A)

1
n�1 : (3.6)

At the minimum we consider, the only baryons with non-zero vevs are b1 and bn. It is

convenient to de�ne r and v such that

b1 = r bn and bn = vn�1 ; (3.7)

where, as in the subsequent discussion, bA stands for the expectation value rather than the

�eld. The ratio r is determined by the ratio of dimensionless coupling �=�, and is given in

the appendix, where various details of the minimum are summarized.

We can then write the F -type expectation-values of b1, bn as,

FbA = FA �v
n

�
v

M

�n�4
; (3.8)

where FA=1;n, which are dimensionless functions of n and r, are given in the appendix.
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This is in fact all we need if we only wish to use the baryon operators as our composite

singlets. It would also be useful however to consider the trilinears YIA for this purpose. Their

vevs are given by (see appendix),

YII =
n�

q �
M3

�
v

M

�n�1
; Y1n = r YII (3.9)

with I = 1 : : : n � 1, and where q is a function of n and r, given in the appendix.

Finally the F -type vevs of the �elds R, may be written as

FRA = frA �M
2

�
v

M

�n�2
; (3.10)

where again, frA are dimensionless functions of n and r and are given in the appendix.

3.2 S = bn=Mn�2

Choosing S = bn=Mn�2 we have,

S = M

�
v

M

�n�1
; (3.11)

FS

S
= Fn �M

�
v

M

�n�3
; (3.12)

FS

S2
= Fn �

�
v

M

��2

: (3.13)

To satisfy the requirements (2.3) and (2.7) without having very small couplings, it is best to

choose a region in which FS is not suppressed compared to the other F components in the

problem, so that Fn is order 1. To see this, note that

FS

S
� Fn

F0

v
:

Therefore, the smaller the factor Fn gets, the smaller the value of v that is needed to keep F0

low. Since v enters squared in (3.13), this would require a smaller coupling � as well.

We �nd that the optimal choice is r � 0:5 (corresponding to �=� between 0.5 and 0.74

for n = 4 : : : 20). Taking M = MGUT and n = 8, the di�erent requirements on FS and S

can be met with � = 3:2 � 10�4 and v=M = 2:4 � 10�2. Alternatively, for n = 7, one can take

� = 9 � 10�5, with v=M = 1:3 � 10�2.
Note that since M = MGUT , we use the stronger constraint (2.8). Taking instead M =

1015 GeV, for which the less-stringent constraint (2.7) can be used, we �nd that for n = 12

� = 7 �10�3 and v=M = 0:11. Raising n to n = 13, one can take � = 1 �10�2 with v=M = 0:14.

For all these choices, and in the following section, FS=S = 104:5 GeV, FS=S
2 = 0:75 and

F0 = 1� 2 � 1018 GeV2.
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Choosing the baryon b1, instead of bn, to play the role of the singlet leads to similar results.

It is amusing to note that these models contain gauge-invariant operators that are natural

candidates for generating a �-term. Consider for example the SU(8) � SU(7) model with

S = b8=M6, and add the superpotential term

1

M2
Y22HU HD ; (3.14)

where HU and HD are the two Higgs doublets. The F -vev of Y22 vanishes for r = 0:57. For

this choice then, (3.14) generates a �-term but no B�-term. Also note,

Y22

S
= nq�1

�

�
; (3.15)

so taking � = 1, we get Y22 � 102 GeV (where we also used the fact that q�1 � 0:8).

However, we have assumed throughout that the K�ahler potential does not contain any

terms that couple the SM �elds to the �elds of the supersymmetry-breaking sector. Such

terms, if present, would contribute masses of order 102:5 GeV to the SM scalars superpartners.

But this assumption would be quite implausible if we allowed superpotential terms of the

form (3.14).

3.3 S = Y=M2

We can also take the trilinear invariants, YIA, to replace the singlet. Here we take S = Y1n=M
2,

which turns out to be the optimal choice. For this choice we have

S =
n

q �
M

�
v

M

�n�1
; (3.16)

where we used (3.9), and,

FS

S
=

(1 + r2)
n�2

2(n�1)

r
fRnM

�
v

M

�n�3
: (3.17)

Here and throughout this section, we set the dimensionless baryon coupling, �, to 1. As we

will see, the \small coupling" in this case is the Yukawa coupling �, multiplying the trilinear

terms in WSB. Note that this coupling drops out in the ratio FS=S, but appears in the ratio

FS=S
2.

Again, it is best to consider regions in which fRn is not small, and we choose r = 0:5. For

M =MGUT , one can take n = 10, with � = 4 � 10�3, and v=M = 2:2 � 10�2. Choosing instead

M = 1015 GeV, we need � = 1 � 10�2, v=M = 8:8 � 10�2 with n = 13, and � = 0:12 with

v=M = 0:1 for n = 14.

9



Recall that to get the low-energy theory we are using, we have integrated out the �elds Q

and L, assuming their masses, �v, are much bigger than �, the scale of the SU(n) group. Since

we are now considering small values of �, we must make sure that the ratio (see appendix)

�

�v
=

 
n q�1���3

�
v

M

�n�4! n

2n+1

(3.18)

is still small. It is easy to see that for su�ciently high values of n, this is indeed the case.

Setting � = 1 and neglecting q�1, which is order 1 for r � 0:5, one can check that it is

acceptably small in all our examples.

Note that the \small coupling" in this case is around 10�3 forMGUT , and 10
�1 forM15 GeV,

an order of magnitude bigger than the \small coupling" that is required when using the baryon

as the singlet. The di�erence is due to a numerical factor{essentially a factor of n that enters

the ratio FS=S
2.

Finally, we note that for M < 1015 GeV, the typical size of the \small coupling" remains

the same (see eqn. (2.15)), but the value of n goes down.

3.4 Discussion

Throughout this section, we have assumed only one term of the form (1.1). This cannot

be justi�ed by any symmetry arguments, since the only global symmetry we have left is

an SU(n � 2) global symmetry, which can be invoked to rule out terms such as bAf �f with

A = 2 : : : n�1. However, our qualitative results remain una�ected even if several terms of the

form (1.1), with di�erent composites appear, unless some special cancellation occurs. First,

we note that vevs of the baryons and trilinears di�er by the \small coupling", either � or �,

which gives at least an order of magnitude di�erence. Thus, if we use a baryon to generate

the messenger masses, through the term bf � �f=Mn�2, additional terms such as Y f � �f=M2,

are negligible, and vice versa. Furthermore, in the examples we constructed with S = bn, b1

had comparable, or smaller vevs. Its presence in the superpotential would thus not a�ect the

results dramatically, unless its coupling to the messengers appears with a di�erent coe�cient,

such that some combination of expectation values conspires to cancel. The same is true for

the trilinears.

Let us now summarize the di�erent energy scales that appear in these models. For con-

creteness, take the SU(7)�SU(6) model withM =MGUT and S = b7=M3. The SU(6) group

is broken at the scale v � 1014 GeV, which is also the mass scale of the �elds Q and L. SU(7)

then con�nes at the scale � � 1010 GeV.

The light �elds of the supersymmetry-breaking sector are the baryons b1, b7, whose scalar

and fermion components have masses of 104:5 GeV, and the baryons bA with A = 2 : : : 6, which
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make up one fundamental of the unbroken global SU(5), whose fermion components are mass-

less (as required by anomaly matching), and whose scalar components have masses of order

104:5 GeV. Finally, the messenger masses are also of order 104:5 GeV, and the supersymmetry-

breaking scale is
p
F0 � 109 GeV.

New massless fermion species, beyond those present in the Standard Model, may spoil the

predictions of standard nucleosynthesis theory, if they contribute signi�cantly to the entropy

at the time of nucleosynthesis (T � 1 MeV) [15]. However, the massless fermions of our

models{the fermion components of b2:::(n�2){interact extremelyweakly, so that their decoupling

temperature is very high. Consequently, their contribution to the entropy at the time of

nucleosynthesis is negligible. To see this, note that at su�ciently low temperatures, the

intreractions of these fermions are described by the low-energy Lagrangian derived from (3.5),

(3.6) (see [16]). Their dominant interaction comes from a 4-fermion term suppressed by v�2.

The rate of this interaction is therefore � � v�4T 5, which is comparable to the expansion rate

H � T 2=MP lanck only for T � 1013 GeV4.

As mentioned above, our models also contain exotic scalars and fermions with masses

around 104 � 105 GeV. These would be present in generic models of the type we consider,

whereas the existence of the massless fermions is a speci�c feature of the SU(n)� SU(n� 1)

supersymmetry-breaking sector. The interactions of this exotic matter are again extremely

weak. The dominant fermion interaction is the 4-fermion interaction mentioned above. The

scalar-interaction Lagrangian derived from (3.5), (3.6) contains couplings involving only scalar

baryons, as well as couplings of scalar baryons to scalar messengers. (Note that all scalar

baryons have couplings to the messengers through the K�ahler potential (3.6)). These couplings

are very small. The typical 4-scalar term has a coe�cient (v=M)2n�4, and higher order terms

are further suppressed by negative powers of v. Therefore, the interactions of these �elds are

not thermalized at temperatures for which the low-energy e�ective theory is valid.

In fact, the maximum reheating temperature after ination is constrained by requiring

that the decay of the LSP to the gravitino does not overclose the universe [17]. In our case,

the gravitino mass is O(1) GeV, for which the authors of ref. [17] conclude that the reheating

temperature cannot exceedO(108) GeV. Therefore, once diluted by ination, the baryon �elds
are not produced thermally5.

Finally we note that the superpartner spectrum of our models is identical to that of the

4At this temperature the low-energy theory is no longer valid for speci�c models. In all the examples we

considered however, the low energy theory is valid below, say, 109 GeV, where the rate is even smaller.
5The baryons are reminiscent of the moduli of Hidden Sector models in that they interact very weakly and

have large vevs. One may therefore worry about the analog of the Polonyi problem [18]. However, here v is at

most 1014 GeV and the mass of the baryons is 104� 105 GeV so the ratio of baryon density to entropy, which

scales like v2m
�1=2

b is about nine orders of magnitude smaller than in the supergravity case.
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models of [1], since the masses of the Standard Model superpartners only depend on the

messenger masses. The only di�erent feature, from the point of view of phenomenology, is

that the supersymmetry-breaking scale is relatively high,
p
F0 � 109 GeV, so that the decay

of the LSP to the gravitino would not occur inside the detector. In this respect our models

are similar to the models of [6], [8].

4 Conclusions

In this paper we explore the possibility of eliminating the fundamental singlet of existing mod-

els of gauge-mediated supersymmetry breaking, by introducing a non-renormalizable super-

potential term that couples the messengers to a chiral gauge-invariant of the supersymmetry-

breaking theory.

We show that to obtain viable models without O(10�9) couplings, the theory used as the

supersymmetry-breaking sector should have a non-renormalizable superpotential.

We then construct several examples with non-renormalizable SU(n)�SU(n� 1) theories

as the supersymmetry-breaking sector, taking di�erent gauge-invariants to replace the funda-

mental singlet. These examples only require couplings of order 10�4 � 10�3 for M = MGUT ,

and of order 10�2 � 10�1 for M � 1015 GeV, where M is the suppression scale of the non-

renormalizable terms.
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Appendix

This appendix summarizes some details regarding the minimum we consider.
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It is convenient to work in terms of the baryon �elds bA. The K�ahler metric can be derived

from (3.6),

gAB = k
1

n�1
�2

�
�n� 2

n� 1
b
y
BbA + k �AB

�
; (A.1)

with k = b
y
Ab

A, and can be easily inverted to get,

g�1AB = k�
1

n�1

�
(n� 2) b

y
AbB + k �AB

�
: (A.2)

The potential is then given by,

g�1AB WAWB ; (A.3)

with, using (3.5),

W1 = � ; (A.4)

Wn =
1

n

�
�n�1 �2n+1

� 1
n (bn)

1
n
�1 + � ; (A.5)

WA = 0 for A = 2 : : : n� 1 : (A.6)

One can then show analytically that the potential is minimized for b1 = rbn � rvn�1,

where 0 < r <
p
n � 1=2 is determined from

�

�
=

(r2 + 1) (n r2 � r2 + 2)P � 3 r4 + 8n r4 � 2n+ 5r2 + n2r2 � 4nr2 � 3n2r4 + 2

2(n � 1) (2n � 2 + r2) r3
; (A.7)

where

P =
p
n� 1

p
n� 1� 4r2 ; (A.8)

and with v given by,

�

v
=

 
nq�1���

n�1
n

�
v

M

�n�4! n

2n+1

; (A.9)

where

q = � (n� 1)

n (n � 2)

r (P + n� r2 � 1)

(r2 + 1)
: (A.10)

Note that q < 0. We therefore take � to be negative. The bounds on � appearing in the

text refer to its absolute value.

The functions F1, Fn de�ned in (3.8) are then given by,

F1 = 1 + (n� 1) r2 + (n � 2) r

 
1

q
+

�

�

!
; (A.11)

Fn = (n � 2) r + (n� 1 + r2)

 
1

q
+

�

�

!
: (A.12)

The simplest at direction that results in the baryon con�guration (3.7) is of the form

RAi = av�Ai for A = 2 : : : n�1, R11 = a�(n�2)v, and Rn1 = ra�(n�2)v, where a = (1+r2)
1

2(n�1) ,

and the second index on R is the SU(n � 1) gauge index.
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We then have

fR1
=

1

n� 1
(1 + r2)

� n�2
2(n�1)

 
1 � (n� 2)F1

r Fn

!
Fn ; (A.13)

fRn = � n � 2

n � 1
(1 + r2)

� n�2
2(n�1) r

 
1 � F1

(n � 2) r Fn

!
Fn ; (A.14)

fRA =
1

n� 1
(1 + r2)

1
2(n�1)

�
1 +

F1

r Fn

�
Fn for A = 2 : : : n� 1 : (A.15)

Finally, to obtain the expectation values of the trilinears YIA, recall that YIA = LI �Q �RA,

and that L andQ are the heavy avors of SU(n) with a mass matrixm = diag(R11; ::; R(n�1)(n�1)).

Therefore, using [13]

hQ � Li =
�
�2n+1 detm

� 1
n

m�1 ; (A.16)

one �nds (3.9).
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